Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Dev Comp Immunol ; 151: 105089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923097
2.
Int Microbiol ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062211

RESUMO

Aeromonas salmonicida is the typical pathogen causing furunculosis, reported widely in salmonids. Because of multiple serotypes, the control of A. salmonicida-caused disease has increasingly received much attention. Recently, A. salmonicida infection was reported in non-salmonid fish species. Here, a pathogenic A. salmonicida, named as As-s, was isolated from cultured snakehead (Channa argus) in a local fish farm in Shandong, China. As-s displayed clear hemolysis, amylase, and positive catalase activities, and grew at a wide range of temperatures (10-37 °C) and pH values (5.5-8.5). As-s was highly sensitive to cefuroxime sodium, ceftriaxone, ceftazidime, piperacillin, and cefoperazone and also apparently sensitive to chloramphenicol, erythromycin, and 25% cinnamaldehyde. The Virulence array protein gene cloning' results suggested that As-s has this gene compared with the other two vapA-containing strains, despite a close relationship of these strains via phylogenetic analysis. Severe ulcers on skin, muscle, and abnormal liver, and hemorrhage in pectoral/ventral fins and anal region were observed, and exophthalmos were also noticed in infected juvenile snakehead, as well as necrosis and infiltration of blood cells emerged in the internal organs using pathological section. In addition, As-s caused high mortality in snakehead, consistently with its immune gene response. This study reports the first isolation of vapA-absent A. salmonicida in snakehead.

3.
mSphere ; 8(5): e0034623, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37642418

RESUMO

Type III secretion system (T3SS) facilitates survival and replication of Edwardsiella piscicida in vivo. Identifying novel T3SS effectors and elucidating their functions are critical in understanding the pathogenesis of E. piscicida. E. piscicida T3SS effector EseG and EseJ was highly secreted when T3SS gatekeeper-containing protein complex EsaB-EsaL-EsaM was disrupted by EsaB deficiency. Based on this observation, concentrated secretomes of ΔesaB strain and ΔesaBΔesaN strain were purified by loading them into SDS-PAGE gel for a short electrophoresis to remove impurities prior to the in-the gel digestion and mass spectrometry. Four reported T3SS effectors and two novel T3SS effector candidates EseQ (ETAE_2009) and Trx2 (ETAE_0559) were unraveled by quantitative comparison of the identified peptides. EseQ and Trx2 were revealed to be secreted and translocated in a T3SS-dependent manner through CyaA-based translocation assay and immunofluorescent staining, demonstrating that EseQ and Trx2 are the novel T3SS effectors of E. piscicida. Trx2 was found to suppress macrophage apoptosis as revealed by TUNEL staining and cleaved caspase-3 of infected J774A.1 monolayers. Moreover, Trx2 has been shown to inhibit the p65 phosphorylation and p65 translocation into the nucleus, thus blocking the NF-κB pathway. Furthermore, depletion of Trx2 slightly but significantly attenuates E. piscicida virulence in a fish infection model. Taken together, an efficient method was established in unraveling T3SS effectors in E. piscicida, and Trx2, one of the novel T3SS effectors identified in this study, was demonstrated to suppress apoptosis and block NF- κB pathway during E. piscicida infection. IMPORTANCE Edwardsiella piscicida is an intracellular bacterial pathogen that causes intestinal inflammation and hemorrhagic sepsis in fish and human. Virulence depends on the Edwardsiella type III secretion system (T3SS). Identifying the bacterial effector proteins secreted by T3SS and defining their role is key to understanding Edwardsiella pathogenesis. EsaB depletion disrupts the T3SS gatekeeper-containing protein complex, resulting in increased secretion of T3SS effectors EseG and EseJ. EseQ and Trx2 were shown to be the novel T3SS effectors of E. piscicida by a secretome comparison between ∆esaB strain and ∆esaB∆esaN strain (T3SS mutant), together with CyaA-based translocation assay. In addition, Trx2 has been shown to suppress macrophage apoptosis and block the NF-κB pathway. Together, this work expands the known repertoire of T3SS effectors and sheds light on the pathogenic mechanism of E. piscicida.


Assuntos
Edwardsiella , Sistemas de Secreção Tipo III , Animais , Humanos , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , NF-kappa B , Edwardsiella/metabolismo , Peixes
4.
J Immunol ; 211(6): 1006-1019, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548504

RESUMO

Liver X receptors (LXRs) are nuclear receptors involved in metabolism and the immune response. Different from mammalian LXRs, which include two isoforms, LXRα and LXRß, only a single LXRα gene exists in the piscine genomes. Although a study has suggested that piscine LXR inhibits intracellular bacterial survival, the functions of piscine LXRα in viral infection are unknown. In this study, we show that overexpression of LXRα from grass carp (Ctenopharyngodon idellus), which is named as gcLXRα, increases host susceptibility to grass carp reovirus (GCRV) infection, whereas gcLXRα knockdown in CIK (C. idellus kidney) cells inhibits GCRV infection. Consistent with these functional studies, gcLXRα knockdown promotes the transcription of antiviral genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway, including IFN regulatory factor (IRF3) and the type I IFN IFN1. Further results show that gcLXRα knockdown induces the expression of CREB-binding protein (CBP), a transcriptional coactivator. In the knockdown of CBP, the inhibitory effect of gcLXRα knockdown in limiting GCRV infection is completely abolished. gcLXRα also interacts with IRF3 and CBP, which impairs the formation of the IRF3/CBP transcription complex. Moreover, gcLXRα heterodimerizes with RXRg, which cooperatively impair the transcription of the RLR antiviral signaling pathway and promote GCRV infection. Taken together, to our knowledge, our findings provide new insight into the functional correlation between nuclear receptor LXRα and the RLR antiviral signaling pathway, and they demonstrate that gcLXRα can impair the RLR antiviral signaling pathway and the production of type I IFN via forming gcLXRα/RXRg complexes and attenuating IRF3/CBP complexes.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Infecções por Reoviridae , Reoviridae , Animais , Humanos , Antivirais/farmacologia , Receptores X do Fígado/metabolismo , Carpas/metabolismo , Proteína de Ligação a CREB/metabolismo , Transdução de Sinais , Interferon Tipo I/metabolismo , Proteínas de Peixes/genética , Mamíferos/metabolismo , Fator Regulador 3 de Interferon/metabolismo
5.
Microbiol Spectr ; 11(4): e0128723, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37466438

RESUMO

The vitamin D receptor (VDR) plays a pivotal role in the biological actions of vitamin D (VitD). However, little is known about the functions of VDR in the production of viral inclusion bodies (VIBs). Using a representative strain of grass carp reovirus (GCRV) genotype I, GCRV-873, we show that GCRV-873 recruits grass carp Vdrs for promoting the production of VIBs in the absence of VitD. Inhibition of cholesterol synthesis by lovastatin impairs the production of VIBs and blocks the effects of grass carp Vdrs in promoting the production of VIBs in the absence of VitD. Furthermore, grass carp Vdrs are found to form the Vdra-Vdrb heterodimer, which is vital for 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hmgcr)-dependent cholesterol synthesis and GCRV replication. Intriguingly in the presence of VitD, grass carp Vdra but not Vdrb forms the heterodimer with the retinoid X receptor beta b (Rxrbb), which induces the transcription of those genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway for inhibiting GCRV infection. Furthermore, the VitD-activated Vdra-Vdrb heterodimer attenuates the transcription of the RLR antiviral signaling pathway induced by VitD. In the presence of VitD, a balance between the Vdra-Rxrbb heterodimers as coactivators and Vdra-Vdrb heterodimers as corepressors in affecting the transcriptional regulation of the RLR antiviral signaling pathway may eventually determine the outcome of GCRV infection. Transfection with VitD can abolish the effect of grass carp Vdrs in promoting GCRV replication in a dose-dependent manner. Taken together, these findings demonstrate that GCRV utilizes host Vdrs to increase hmgcr-dependent cholesterol synthesis for promoting its replication, which can be prevented by VitD treatment. IMPORTANCE Grass carp reovirus (GCRV) is the causative agent of grass carp hemorrhagic disease, which seriously harms freshwater fish. Although many positive or negative regulators of GCRV infection have been identified in teleosts, little is known about the molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection. Here, we show that in the absence of VitD, the GCRV-873 strain utilizes host vitamin D receptors Vdra/Vdrb to increase hmgcr-dependent cholesterol synthesis for promoting the production of VIBs, which are important functional sites for aquareovirus replication and assembly. The negative regulation of Vdrs during viral infection can be prevented by VitD treatment. Thus, this present work broadens understanding of the pivotal roles of Vdrs in the interaction between the host and GCRV in the absence or presence of VitD, which might provide a rational basis for developing novel anti-GCRV strategies.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Receptores de Calcitriol/genética , Receptores de Calcitriol/uso terapêutico , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Reoviridae/genética , Infecções por Reoviridae/veterinária , Antivirais/farmacologia , Antivirais/uso terapêutico , Vitaminas , Replicação Viral , Doenças dos Peixes/tratamento farmacológico
6.
J Immunol ; 210(11): 1771-1789, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017564

RESUMO

The type IV IFN (IFN-υ) is reported in vertebrates from fish to primary mammals with IFN-υR1 and IL-10R2 as receptor subunits. In this study, the proximal promoter of IFN-υ was identified in the amphibian model, Xenopus laevis, with functional IFN-sensitive responsive element and NF-κB sites, which can be transcriptionally activated by transcription factors, such as IFN regulatory factor (IRF)1, IRF3, IRF7, and p65. It was further found that IFN-υ signals through the classical IFN-stimulated gene (ISG) factor 3 (ISGF3) to induce the expression of ISGs. It seems likely that the promoter elements of the IFN-υ gene in amphibians is similar to type III IFN genes, and that the mechanism involved in IFN-υ induction is very much similar to type I and III IFNs. Using recombinant IFN-υ protein and the X. laevis A6 cell line, >400 ISGs were identified in the transcriptome, including ISGs homologous to humans. However, as many as 268 genes were unrelated to human or zebrafish ISGs, and some of these ISGs were expanded families such as the amphibian novel TRIM protein (AMNTR) family. AMNTR50, a member in the family, was found to be induced by type I, III, and IV IFNs through IFN-sensitive responsive element sites of the proximal promoter, and this molecule has a negative role in regulating the expression of type I, III, and IV IFNs. It is considered that the current study contributes to the understanding of transcription, signaling, and functional aspects of type IV IFN at least in amphibians.


Assuntos
Interferon Tipo I , Interferons , Animais , Humanos , Xenopus laevis , Interferons/genética , Interferons/metabolismo , Peixe-Zebra/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Interferon Tipo I/metabolismo , Mamíferos/metabolismo
7.
J Immunol ; 210(10): 1494-1507, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37010945

RESUMO

IFN-stimulated genes (ISGs) can act as effector molecules against viral infection and can also regulate pathogenic infection and host immune response. N-Myc and STAT interactor (Nmi) is reported as an ISG in mammals and in fish. In this study, the expression of Nmi was found to be induced significantly by the infection of Siniperca chuatsi rhabdovirus (SCRV), and the induced expression of type I IFNs after SCRV infection was reduced following Nmi overexpression. It is observed that Nmi can interact with IRF3 and IRF7 and promote the autophagy-mediated degradation of these two transcription factors. Furthermore, Nmi was found to be interactive with IFP35 through the CC region to inhibit IFP35 protein degradation, thereby enhancing the negative role in type I IFN expression after viral infection. In turn, IFP35 is also capable of protecting Nmi protein from degradation through its N-terminal domain. It is considered that Nmi and IFP35 in fish can also interact with each other in regulating negatively the expression of type I IFNs, but thus in enhancing the replication of SCRV.


Assuntos
Interferon Tipo I , Peptídeos e Proteínas de Sinalização Intracelular , Animais , Interferon Tipo I/metabolismo , Peixes
8.
Fish Shellfish Immunol ; 137: 108732, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37044186

RESUMO

Polymeric immunoglobulin receptor (pIgR) can bind and transport immunoglobulins (Igs), thus playing a role in mucosal immunity. In this study, pIgR gene was cloned in mandarin fish, Siniperca chuatsi, with the open reading frame (ORF) of 1011 bp, encoding 336 amino acids. The pIgR protein consists of a signal peptide, an extracellular domain, a transmembrane domain and an intracellular region, with the presence of two Ig-like domains (ILDs) in the extracellular domain, as reported in other species of fish. The pIgR gene was expressed in all organs/tissues of healthy mandarin fish, with higher level observed in liver and spleen. Following the immersion infection of Flavobacterium columnare, pIgR transcripts were detected in immune related, especially mucosal tissues, with significantly increased transcription during the first two days of infection. Through transfection of plasmids expressing pIgR, IgT and IgM, pIgR was found to be interacted with IgT and IgM as revealed by co-immunoprecipitation and immunofluorescence.


Assuntos
Doenças dos Peixes , Perciformes , Receptores de Imunoglobulina Polimérica , Animais , Sequência de Aminoácidos , Alinhamento de Sequência , Receptores de Imunoglobulina Polimérica/genética , Peixes , Clonagem Molecular , Imunoglobulina M/genética , Proteínas de Peixes
9.
Dev Comp Immunol ; 142: 104671, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801427

RESUMO

In mammals, the tripartite motif (TRIM) proteins have been identified as critical factors involved in various cellular processes, including antiviral immunity. In teleost fish, a subfamily of fish-specific TRIM (finTRIM, FTR) has emerged in genus- or species-specific duplication. In this study, a finTRIM gene, called ftr33, was identified in zebrafish (Danio rerio), and phylogenic analysis revealed that FTR33 is closely related with zebrafish FTR14. The FTR33 protein contains all conservative domains reported in other finTRIMs. The ftr33 has a constitutive expression in embryos and in tissues/organs of adult fish, and its expression can be induced following spring viremia of carp virus (SVCV) infection and interferon (IFN) stimulation. The overexpression of FTR33 significantly downregulated the expression of type I IFNs and IFN-stimulated genes (ISGs) both in vitro and in vivo, respectively, leading to the increased replication of SVCV. It was also found that FTR33 interacted with melanoma differentiation associated gene 5 (MDA5) or mitochondrial anti-viral signaling protein (MAVS) to weaken the promoter activity of type I IFN. It is thus concluded that the FTR33, as an ISG, in zebrafish can negatively regulate IFN-mediated antiviral response.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Animais , Peixe-Zebra , Antivirais/metabolismo , Interferons/metabolismo , Interferon Tipo I/genética , Carpas/metabolismo , Imunidade Inata/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Mamíferos
10.
Dev Comp Immunol ; 141: 104649, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716904

RESUMO

Interferon regulatory factor 11 (IRF11), an intriguing IRF member found only in fish species, has recently been shown to have antiviral properties that are dependent on its nuclear entry and DNA binding affinity. However, the mechanisms by which IRF11 enters the nucleus are unknown. In the present study, we found orthologs of IRF11 in lamprey and lancelet species by combining positional, phylogenetic and structural comparison data, showing that this gene has an ancient origin. The IRF11 gene (AjIRF11) from the Japanese eel, Anguilla japonica, was subsequently characterized, and it was found that AjIRF11 has antiviral activities against spring viremia of carp virus (SVCV), which are accomplished by regulating the production of type I IFN and IFN-stimulated genes. In addition to its known DNA binding residues in the α3 helix, two residues in Loop 1, His40 and Trp46, are also involved in DNA binding and activation of the IFN promoter. Using immunofluorescence microscopy and site-directed mutagenesis analysis, we confirmed that full nuclear localization of AjIRF11 requires the bipartite nuclear localization sequence (NLS) spanning residues 75 to 101, as well as the monopartite NLS situated between residues 119 and 122. Coimmunoprecipitation assays confirmed that AjIRF11 interacts with importin α via its NLSs and can also bind to importin ß directly, implying that IRF11 can be imported to the nucleus by one or more transport receptors.


Assuntos
alfa Carioferinas , beta Carioferinas , Animais , Transporte Ativo do Núcleo Celular/fisiologia , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Antivirais/metabolismo , Filogenia , Núcleo Celular/metabolismo , DNA
11.
Fish Shellfish Immunol ; 130: 215-222, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122636

RESUMO

In the present study, the zinc finger aspartate-histidine-histidine-cysteine (DHHC)-type containing 1 (ZDHHC1) gene was identified in a commercial fish, the Chinese perch Siniperca chuatsi. The ZDHHC1 has five putative transmembrane motifs and conserved DHHC domain, showing high amino-acid identity with other teleost fish, and vertebrate ZDHHC1 loci are conserved from fish to human. In vivo expression analysis indicated that ZDHHC1 gene was constitutively transcribed in all the examined organs/tissues, and was induced following infectious spleen and kidney necrosis virus (ISKNV) infection. It is further observed that ZDHHC1 interacts with MITA and the overexpression of ZDHHC1 in cells resulted in the upregulated expression of ISGs, such as Mx, RSAD2, IRF3 and type I IFNs such as IFNh and IFNc, exhibiting its antiviral function in fish as reported in mammals.


Assuntos
Aciltransferases , Proteínas de Peixes , Percas , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Antivirais , Cisteína , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Histidina , Iridoviridae , Percas/genética , Dedos de Zinco
12.
mBio ; 13(4): e0125022, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35861543

RESUMO

The intracellular EscE protein tightly controls the secretion of the type III secretion system (T3SS) middle and late substrates in Edwardsiella piscicida. However, the regulation of secretion by EscE is incompletely understood. In this work, we reveal that EscE interacts with EsaH and EsaG. The crystal structures of the EscE-EsaH complex and EscE-EsaG-EsaH complex were resolved at resolutions of 1.4 Å and 1.8 Å, respectively. EscE and EsaH form a hydrophobic groove to engulf the C-terminal region of EsaG (56 to 73 amino acids [aa]), serving as the cochaperones of T3SS needle protein EsaG in E. piscicida. V61, K62, M64, and M65 of EsaG play a pivotal role in maintaining the conformation of the ternary complex of EscE-EsaG-EsaH, thereby maintaining the stability of EsaG. An in vivo experiment revealed that EscE and EsaH stabilize each other, and both of them stabilize EsaG. Meanwhile, either EscE or EsaH can be secreted through the T3SS. The secondary structure of EsaH lacks the fourth and fifth α helices presented in its homologs PscG, YscG, and AscG. Insertion of the α4 and α5 helices of PscG or swapping the N-terminal 25 aa of PscG with those of EsaH starkly decreases the protein level of the chimeric EsaH, resulting in instability of EsaG and deactivation of the T3SS. To the best of our knowledge, these data represent the first reported structure of the T3SS needle complex of pathogens from Enterobacteriaceae and the first evidence for the secretion of T3SS needle chaperones. IMPORTANCE Edwardsiella piscicida causes severe hemorrhagic septicemia in fish. Inactivation of the type III secretion system (T3SS) increases its 50% lethal dose (LD50) by ~10 times. The secretion of T3SS middle and late substrates in E. piscicida is tightly controlled by the intracellular steady-state protein level of EscE, but the mechanism is incompletely understood. In this study, EscE was found to interact with and stabilize EsaH in E. piscicida. The EscE-EsaH complex is structurally analogous to T3SS needle chaperones. Further study revealed that EscE and EsaH form a hydrophobic groove to engulf the C-terminal region of EsaG, serving as the cochaperones stabilizing the T3SS needle protein EsaG. Interestingly, both EscE and EsaH are secreted. Our study reveals that the EscE-EsaH complex controls T3SS protein secretion by stabilizing EsaG, whose secretion in turn leads to the secretion of the middle and late T3SS substrates.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Edwardsiella/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estrutura Secundária de Proteína , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
13.
Fish Shellfish Immunol ; 127: 933-938, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35863538

RESUMO

In this study, peptidoglycan recognition protein 2 (PGRP2) gene was cloned in grass carp Ctenopharyngodon idella, with the open reading frame (ORF) of PGRP2 being 1452 bp, encoding a protein of 483 amino acids. Three splice variants, PGRP2a, PGRP2b, and PGRP2c, were found also in grass carp with the absence of entire exon two and partial exon two of the PGRP2, and were predicted to have 124, 371 and 311 amino acids. But, they all have PGRP domain and signal peptide, except PGRP2a. The PGRP2 and its variants were expressed in all organs/tissues examined, and stimulated following PGN injection. It is further detected that the expression of gcPGRP2 and its variants was up-regulated after the single transfection of each of gcPGRP2 and its variant expression plasmids in CO cells. It is considered that the cloning of PGRP2 in grass carp provides a compositional completeness of PGRP members in this fish with the inclusion of previously reported PGRP5 and PGRP6.


Assuntos
Carpas , Doenças dos Peixes , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Carpas/genética , Carpas/metabolismo , Clonagem Molecular , Éxons , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Filogenia
14.
Folia Parasitol (Praha) ; 692022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35818833

RESUMO

In recent years, an emerging dermocystidiosis caused by Dermocystidium anguillae Spangenberg, 1975 has been found to pose a threat to the culture of American eel, Anguilla rostrata (Lesueur), as well as Chinese perch, Siniperca chuatsi (Basilewsky), in China. Dermocystidium anguillae was originally described from European eel, Anguilla anguilla (Linnaeus), and it is thus important to identify the possible source of this pathogen. In the present study, we compared D. anguillae from European eels cultured in China with those from American eels. Molecular analysis showed that the SSU rDNA of D. anguillae infecting European eels was identical to that of D. anguillae infecting American eels, suggesting their conspecificity. To investigate the source of D. anguillae causing dermocystidiosis in American eels cultured in China, a specific PCR assay for the detection of D. anguillae was developed with high sensitivity (10-6 ng/µl of D. anguillae genomic DNA). Using the present molecular detection method, the water and sediment of culture ponds, fish feed and American eel elvers imported from America were screened for the presence of D. anguillae. No amplicons were detected from the water, sediment and fish feed samples. However, positive amplicons were found in American eel elvers, indicating that D. anguillae has been introduced from American eel elvers to China. It is suggested that American eel elvers imported from America should be examined for the presence of D. anguillae before their exportation abroad to prevent the spread of this pathogen.


Assuntos
Anguilla , Animais , China/epidemiologia , Água
15.
Dev Comp Immunol ; 134: 104461, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660570

RESUMO

Type I interferons (IFNs) are critical cytokines for the establishment of antiviral status in fish, amphibian, avian and mammal, but the knowledge on type I IFNs is rather limited in reptile. In this study, seven type I IFN genes, designed as IFN1 to IFN7, were identified from a reptile species, the Chinese soft-shelled turtle (Pelodiscus sinensis). These identified type I IFNs have relatively low protein identity, when compared with those in human and chicken; but they possess conserved cysteines, predicted multi-helix structure and N-terminal signal peptide. The Chinese soft-shelled turtle IFN1 to IFN5 have two exons and one intron, but IFN6 and IFN7 are the single-exon genes. Chinese soft-shelled turtle type I IFNs are located respectively on the two conserved reptile-bird loci, named as Locus a and Locus c, and are clustered into the four of the five reptile-bird groups (named as Groups I-V) based on phylogenetic evidence, due to the lack of IFNK in the turtle. Moreover, the Chinese soft-shelled turtle type I IFNs can be induced by soft-shelled turtle iridovirus (STIV) infection and show antiviral activity in soft-shelled turtle artery (STA) cells, except IFN6. In addition, due to the difference in genome organizations, such as the number of exons and introns of type I IFN genes from fish to mammal, the definition and evolution of 'intronless' type I IFN genes were discussed in lineages of vertebrates. Thus, the finding of type I IFNs on two different loci in P. sinensis sheds light on the evolution of type I IFN genes in vertebrates.


Assuntos
Interferon Tipo I , Tartarugas , Animais , Antivirais/metabolismo , China , Interferon Tipo I/genética , Mamíferos , Filogenia , Répteis , Sintenia , Tartarugas/genética , Tartarugas/metabolismo
16.
Vet Res ; 53(1): 40, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35692056

RESUMO

Edwardsiella piscicida is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish. The type III secretion system (T3SS) is one of its two most important virulence islands. T3SS protein EseJ inhibits E. piscicida adhesion to epithelioma papillosum cyprini (EPC) cells by negatively regulating type 1 fimbria. Type 1 fimbria helps E. piscicida to adhere to fish epithelial cells. In this study, we characterized a functional unknown protein (Orf1B) encoded within the T3SS gene cluster of E. piscicida. This protein consists of 122 amino acids, sharing structural similarity with YscO in Vibrio parahaemolyticus. Orf1B controls secretion of T3SS translocon and effectors in E. piscicida. By immunoprecipitation, Orf1B was shown to interact with T3SS ATPase EsaN. This interaction may contribute to the assembly of the ATPase complex, which energizes the secretion of T3SS proteins. Moreover, disruption of Orf1B dramatically decreased E. piscicida adhesion to EPC cells due to the increased steady-state protein level of EseJ within E. piscicida. Taken together, this study partially unraveled the mechanisms through which Orf1B promotes secretion of T3SS proteins and contributes to E. piscicida adhesion. This study helps to improve our understanding on molecular mechanism of E. piscicida pathogenesis.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Adenosina Trifosfatases , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Edwardsiella , Infecções por Enterobacteriaceae/veterinária , Células Epiteliais/metabolismo , Peixes , Fatores de Virulência/genética
17.
Microb Pathog ; 167: 105577, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35561979

RESUMO

Edwardsiella ictaluri, a Gram-negative intracellular pathogen, is the causative agent of enteric septicemia in channel catfish, and catfish aquaculture in China suffers heavy economic losses due to E. ictaluri infection. Vaccination is an effective control measure for this disease. In this study, an attenuated E. ictaluri strain was acquired through deletion mutation of the T3SS protein eseJei, and the ΔeseJei strain fails to replicate in the epithelioma papillosum of carp cells. The type 1 fimbria plays a pivotal role in the adhesion of E. ictaluri, and it was found in this study that deletion of -245 to -50 nt upstream of fimA increases its adhesion to around five times that of the WT strain. A hyper-adhesive and highly attenuated double mutant (ΔeseJeiΔfimA-245--50 strain) was constructed, and it was used as a vaccine candidate in yellow catfish via bath immersion at a dosage of 1 × 105 CFU/mL. It was found that this vaccine candidate can stimulate protection when challenged with E. ictaluri HSN-1 at 5 × 107 CFU/mL (∼20 × LD50). The survival rate was 83.61% for the vaccinated group and 33.33% for the sham-vaccinated group. The RPS (relative percent of survival) of the vaccination trial reached 75.41%. In conclusion, the ΔeseJeiΔfimA-245--50 strain developed in this study can be used as a vaccine candidate. It excels in terms of ease of delivery (via bath immersion) and is highly efficient in stimulating protection against E. ictaluri infection.


Assuntos
Vacinas Bacterianas , Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Aderência Bacteriana , Peixes-Gato/microbiologia , Edwardsiella ictaluri , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Imersão , Vacinas Atenuadas
18.
Nat Commun ; 13(1): 999, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194032

RESUMO

Interferons (IFNs) are critical soluble factors in the immune system and are composed of three types, (I, II and III) that utilize different receptor complexes IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively. Here we identify IFN-υ from the genomic sequences of vertebrates. The members of class II cytokine receptors, IFN-υR1 and IL-10R2, are identified as the receptor complex of IFN-υ, and are associated with IFN-υ stimulated gene expression and antiviral activity in zebrafish (Danio rerio) and African clawed frog (Xenopus laevis). IFN-υ and IFN-υR1 are separately located at unique and highly conserved loci, being distinct from all other three-type IFNs. IFN-υ and IFN-υR1 are phylogenetically clustered with class II cytokines and class II cytokine receptors, respectively. Therefore, the finding of this IFN ligand-receptor system may be considered as a type IV IFN, in addition to the currently recognized three types of IFNs in vertebrates.


Assuntos
Interferons , Subunidade beta de Receptor de Interleucina-10 , Receptores de Citocinas , Receptores de Interferon , Animais , Antivirais , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Peixe-Zebra
19.
J Immunol ; 208(3): 707-719, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022273

RESUMO

Grass carp reovirus (GCRV) is a highly virulent RNA virus that mainly infects grass carp and causes hemorrhagic disease. The roles of nonstructural proteins NS38 and NS80 of GCRV-873 in the viral replication cycle and viral inclusion bodies have been established. However, the strategies that NS38 and NS80 used to avoid host antiviral immune response are still unknown. In this study, we report the negative regulations of NS38 and NS80 on the RIG-I-like receptors (RLRs) antiviral signaling pathway and the production of IFNs and IFN-stimulated genes. First, both in the case of overexpression and GCRV infection, NS38 and NS80 inhibited the IFN promoter activation induced by RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7 and mRNA abundance of key antiviral genes involved in the RLR-mediated signaling. Second, both in the case of overexpression and GCRV infection, NS38 interacted with piscine TBK1 and IRF3, but not with piscine RIG-I, MDA5, MAVS, and TNF receptor-associated factor (TRAF) 3. Whereas NS80 interacted with piscine MAVS, TRAF3, and TBK1, but not with piscine RIG-I, MDA5, and IRF3. Finally, both in the case of overexpression and GCRV infection, NS38 inhibited the formation of the TBK1-IRF3 complex, but NS80 inhibited the formation of the TBK1-TRAF3 complex. Most importantly, NS38 and NS80 could hijack piscine TBK1 and IRF3 into the cytoplasmic viral inclusion bodies and inhibit the translocation of IRF3 into the nucleus. Collectively, all of these data demonstrate that GCRV nonstructural proteins can avoid host antiviral immune response by targeting the RLR signaling pathway, which prevents IFN-stimulated gene production and facilitates GCRV replication.


Assuntos
Carpas/virologia , RNA Helicases DEAD-box/metabolismo , Evasão da Resposta Imune/imunologia , Infecções por Reoviridae/veterinária , Reoviridae/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Células Cultivadas , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Fatores Reguladores de Interferon/metabolismo , Interferons/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/patologia , Fator 3 Associado a Receptor de TNF/metabolismo , Replicação Viral/fisiologia
20.
Front Oncol ; 11: 792516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950593

RESUMO

OBJECTIVE: To develop a deep learning model for synthesizing the first phases of dynamic (FP-Dyn) sequences to supplement the lack of information in unenhanced breast MRI examinations. METHODS: In total, 97 patients with breast MRI images were collected as the training set (n = 45), the validation set (n = 31), and the test set (n = 21), respectively. An enhance border lifelike synthesize (EDLS) model was developed in the training set and used to synthesize the FP-Dyn images from the T1WI images in the validation set. The peak signal-to-noise ratio (PSNR), structural similarity (SSIM), mean square error (MSE) and mean absolute error (MAE) of the synthesized images were measured. Moreover, three radiologists subjectively assessed image quality, respectively. The diagnostic value of the synthesized FP-Dyn sequences was further evaluated in the test set. RESULTS: The image synthesis performance in the EDLS model was superior to that in conventional models from the results of PSNR, SSIM, MSE, and MAE. Subjective results displayed a remarkable visual consistency between the synthesized and original FP-Dyn images. Moreover, by using a combination of synthesized FP-Dyn sequence and an unenhanced protocol, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MRI were 100%, 72.73%, 76.92%, and 100%, respectively, which had a similar diagnostic value to full MRI protocols. CONCLUSIONS: The EDLS model could synthesize the realistic FP-Dyn sequence to supplement the lack of enhanced images. Compared with full MRI examinations, it thus provides a new approach for reducing examination time and cost, and avoids the use of contrast agents without influencing diagnostic accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...